多P 大杂交_欧美黑人肉体狂欢交换_亚洲 校园 偷拍 春色_亚洲中久无码永久在线_碧血剑在线观看

?
14
2022-03

什么?韋布天文望遠鏡也用上了碲鎘汞紅外探測器?

Author:admin

資料來源NASA官網(wǎng),由海爾欣市場部翻譯整理


題注:韋布通過將冷卻至極低溫的大口徑太空望遠鏡(預(yù)計是斯皮策紅外天文望遠鏡的50倍靈敏度和7倍的角分辨率)和最先進的紅外探測器工藝相結(jié)合,帶來了科學能力的巨大進步。它將為以下四個科學任務(wù)做出重要貢獻:

1.發(fā)現(xiàn)宇宙的“第一道光”;

2.星系的集合,恒星形成的歷史,黑洞的生長,重元素的產(chǎn)生;

3.恒星和行星系統(tǒng)是如何形成的;

4.行星系統(tǒng)和生命條件的演化。

而這一切,都離不開部署在韋布上的最先進的紅外探測器陣列!


============================================================

近日,NASA公布了“鴿王”詹姆斯·韋布望遠鏡拍攝的第一張照片!

圖1. 韋布拍的第一張照片,圖源:NASA

圖1.韋布拍的第一張照片,圖源:NASA


什么鬼?!這臺花費百億美金的望遠鏡有點散光啊……怕不是在逗我玩呢吧……


別急,這確實是韋布望遠鏡用它的近紅外相機(NIRCam)拍的第一張照片。確切來說,這只是第一張馬賽克拼圖的中間部分。上面一共18個亮點,每個亮點都是北斗七星附近的同一顆恒星。因為韋布的主鏡由18塊正六邊形鏡片拼接而成,之前為了能夠塞進火箭狹窄的“貨艙”發(fā)射升空,韋布連主鏡片都折疊了起來,直到不久前才完全展開。但這些主鏡片還沒有對齊,于是便有了首張照片上那18個看似隨機分布散斑亮點。

對于韋布團隊的工程師而言,這張照片可以指導他們接下來對每一塊主鏡片作精細調(diào)整,直到這18個亮點合而為一,聚成一個清晰的恒星影像為止。想看韋布拍攝的清晰版太空美圖,我們還要再耐心等幾個月才行。小編覺得,大概到今年夏天,就差不多了吧。

=============================================================================

中紅外儀器MIRI

如果把韋布網(wǎng)球場般大小的主反射鏡,比作人類窺探宇宙的“紅外之眼”的晶狀體的話,韋布攜帶的中紅外儀器,可以說就是這顆“紅外之眼”的視網(wǎng)膜了。今天,小編要帶大家了解的,就是韋布得以超越哈勃望遠鏡的絕對核心設(shè)備——中紅外儀器 (MIRI,Mid-infared Instrument)。

圖2. 韋布望遠鏡的主要子系統(tǒng)和組件,中紅外儀器MIRI位于集成科學儀器模組(ISIM)。原圖來源:NASA

圖2.韋布望遠鏡的主要子系統(tǒng)和組件,中紅外儀器MIRI位于集成科學儀器模組(ISIM)。原圖來源:NASA


如圖2所示,韋布望遠鏡的主、副鏡片經(jīng)過精細調(diào)整和校準后,收集來自遙遠太空的星光,并將其導引至集成科學儀器模組(ISIM)進行分析。ISIM包含以下四種儀器:

l 中紅外儀器(MIRI)

l 近紅外光譜儀(NIRSpec)

l 近紅外相機(NIRCam)

l 精細導引傳感器/近紅外成像儀和無狹縫光譜儀(FGS-NIRISS)



其中,最引人注目的,便是韋布望遠鏡的中紅外儀器 (MIRI,Mid-infared Instrument) 。MIRI包含一個中紅外成像相機和數(shù)個中紅外光譜儀,可以看到電磁光譜中紅外區(qū)域的光,這個波長比我們?nèi)庋劭吹降囊L。



圖3. MIRI 將工作在 5 至 28 微米的中遠紅外波長范圍。圖源:NASA

圖3.MIRI將工作在5至28微米的中遠紅外波長范圍。圖源:NASA

MIRI 的觀測涵蓋 5 至 28 微米的中紅外波長范圍(圖3)。 它靈敏的探測器將使其能夠看到遙遠的星系,新形成的恒星,以及柯伊伯帶中的彗星及其他物體的微弱的紅移光。 MIRI 的紅外相機,將提供寬視場、寬譜帶的成像,它將繼承哈勃望遠鏡舉世矚目的成就,繼續(xù)在紅外波段拍攝令人驚嘆的天文攝影。 所啟用的中等分辨率光譜儀,有能力觀察到遙遠天體新的物理細節(jié)(如可能獲取的地外行星大氣紅外光譜特征)。MIRI 為中紅外波段天文觀測提供了四種基本功能:
1.中紅外相機:使用覆蓋 5.6 μm 至 25.5μm 波長范圍的 9 個寬帶濾光片獲得成像;
2.低分辨光譜儀:通過 5 至 12 μm 的低光譜分辨率模式獲得光譜,包括有狹縫和無狹縫選項,
3.中分辨光譜儀:通過 4.9 μm 至 28.8 μm 的能量積分單元,獲得中等分辨率光譜;
4.中紅外日冕儀:包含一個Lyot濾光器和三個4象限相位掩模日冕儀,均針對中紅外光譜區(qū)域進行了優(yōu)化。 
韋布的MIRI是由歐洲天文科研機構(gòu)和美國加州噴氣推進實驗室 (JPL) 聯(lián)合開發(fā)的。 MIRI在歐洲的首席研究員是 Gillian Wright(英國天文技術(shù)中心),在美國的首席研究員是 George Rieke(亞利桑那大學)。 MIRI 儀器科學家,是 英國天文技術(shù)中心 的 Alistair Glasse 和 噴氣推進實驗室 的 Michael Ressler。

===============================================================================
深入了解MIRI的技術(shù)細節(jié)

圖4. 集成科學儀器模組(ISIM)的三大區(qū)域在韋布上的位置。圖源:NASA

圖4.集成科學儀器模組(ISIM)的三大區(qū)域在韋布上的位置。圖源:NASA 

將四種主要儀器和眾多子系統(tǒng)集成到一個有效載荷ISIM中是一項艱巨的工作。 為了簡化集成,工程師將ISIM劃分為三個區(qū)域(如圖4):


“區(qū)域1” 是低溫儀器模塊,MIRI探測器就包含在其中。這部分區(qū)域?qū)⑻綔y器冷卻到39 K,這是必要的第一階段的冷卻目標,以便航天器自身的熱量,不會干擾從遙遠的宇宙探測到的紅外光(也是一種熱量輻射)。ISIM和光學望遠鏡(OTE)熱管理子系統(tǒng)提供被動冷卻,而使探測器變得更冷,則需使用其他方式。

“區(qū)域2” 是ISIM電子模塊,它為電子控制設(shè)備提供安裝接口和較溫暖的工作環(huán)境。

“區(qū)域3”,位于航天器總線系統(tǒng)內(nèi),是ISIM命令和數(shù)據(jù)處理子系統(tǒng),具有集成的ISIM飛行控制軟件,以及MIRI創(chuàng)新的低溫主動冷卻器壓縮機(CCA)和控制電子設(shè)備(CCE)。



圖5. MIRI整體構(gòu)成及各子系統(tǒng)所處的區(qū)域。圖源:NASA

圖5. MIRI整體構(gòu)成及各子系統(tǒng)所處的區(qū)域。圖源:NASA

圖5示出了MIRI的整體構(gòu)成及其子系統(tǒng)在韋布三大區(qū)域中的分布情況。包含成像相機,光譜儀,日冕儀的光學模塊 (OM) 位于集成科學儀器模塊 (ISIM) 內(nèi),工作溫度為 40K。 OM 和焦平面模塊 (FPM) 通過基于脈沖管的機械主動冷卻器降低溫度,航天器中的壓縮機 (CCA) ,控制電子設(shè)備 (CCE) 和制冷劑管線 (RLDA) 將冷卻氣體(氦氣)帶到 OM 附近實現(xiàn)主動制冷。儀器的機械位移,由儀器控制電子設(shè)備 (ICE) 控制,焦平面的精細位置調(diào)整,由焦平面電子設(shè)備 (FPE) 操作,兩者都位于上述放置在 ISIM 附近的較溫暖的“區(qū)域 2”中。

圖6. ISIM低溫區(qū)域1(安裝于主鏡背后)中的MIRI結(jié)構(gòu)設(shè)計及四個核心功能模塊的位置。原圖來源:NASA

圖6. ISIM低溫區(qū)域1(安裝于主鏡背后)中的MIRI結(jié)構(gòu)設(shè)計及四個核心功能模塊的位置。原圖來源:NASA

探測器是吸收光子并最終轉(zhuǎn)換為可測量的電壓信號的器件。每臺光譜儀或成像儀都有自己的探測器陣列。韋布需要極其靈敏的,大面積的探測器陣列,來探測來自遙遠星系,恒星,和行星的微弱光子。韋布通過擴展紅外探測器的先進技術(shù),生產(chǎn)出比前代產(chǎn)品噪音更低,尺寸更大,壽命更長的探測器陣列。

圖7. (左)韋布望遠鏡近紅外相機 (NIRCam) 的碲鎘汞探測器陣列,(右)MIRI 的紅外探測器(綠色)安裝在一個被稱為焦平面模塊的塊狀結(jié)構(gòu)中,這是一塊1024x1024 像素的砷摻雜硅像素陣列(100萬像素)。圖源:NASA。

圖7. (左)韋布望遠鏡近紅外相機(NIRCam)的碲鎘汞探測器陣列,(右)MIRI 的紅外探測器(綠色)安裝在一個被稱為焦平面模塊的塊狀結(jié)構(gòu)中,這是一塊1024x1024像素的砷摻雜硅像素陣列(100萬像素)。圖源:NASA。

韋布使用了兩種不同材料類型的探測器。如圖7所示,左圖是用于探測 0.6 -5 μm波段的近紅外碲鎘汞(縮寫為HgCdTe或MCT)“H2RG”探測器,右圖是用于探測5 - 28 μm波段的中紅外摻砷硅(縮寫為Si:As)探測器。近紅外探測器由加利福尼亞州的Teledyne Imaging Sensors制造?!癏2RG”是Teledyne產(chǎn)品線的名稱。中紅外探測器,由同樣位于加利福尼亞的Raytheon Vision Systems制造。每個韋布“H2RG”近紅外碲鎘汞探測器陣列,有大約 400萬個像素。每個中紅外摻砷硅探測器,大約有100萬個像素。(小編點評:以單像素碲鎘汞探測器的現(xiàn)有市場價格計算,一塊韋布碲鎘汞探測器陣列的價格就要四十億美金?。?!為了拓展人類天文知識的邊界,韋布這回真是不計血本??!)

碲鎘汞是一種非常有趣的材料。通過改變汞與鎘的比例,可以調(diào)整材料以感應(yīng)更長或更短波長的光子。韋布團隊利用這一點,制造了兩種汞-鎘-碲化物成分構(gòu)成的探測器陣列:一種在0.6 - 2.5μm范圍內(nèi)的汞比例較低,另一種在0.6 - 5μm范圍內(nèi)的汞含量較高。這具有許多優(yōu)點,包括可以定制每個NIRCam檢測器,以在將要使用的特定波長上實現(xiàn)峰值性能。表1顯示了韋布儀器中包含的每種類型探測器的數(shù)量。


表1. 韋布望遠鏡上的光電探測器,其中MIRI包含三塊砷摻雜的硅探測器,一塊用于中紅外相機和低分辨光譜儀,另外兩塊用于中分辨光譜儀。來源:NASA

表1.韋布望遠鏡上的光電探測器,其中MIRI包含三塊砷摻雜的硅探測器,一塊用于中紅外相機和低分辨光譜儀,另外兩塊用于中分辨光譜儀。來源:NASA

而MIRI 的核心中紅外探測功能,則是由三塊砷摻雜的硅探測器(Si:As)陣列提供。其中,中紅外相機模塊提供寬視場,寬光譜的圖像,光譜儀模塊在比成像儀更小的視場內(nèi),提供中等分辨率光譜。MIRI 的標稱工作溫度為7K,如前文所述,使用熱管理子系統(tǒng)提供的被動冷卻技術(shù)無法達到這種溫度水平。因此,韋布攜帶了創(chuàng)新的主動雙級“低溫冷卻器”,專門用于冷卻 MIRI的紅外探測器。脈沖管預(yù)冷器將儀器降至18K,再通過Joule-Thomson Loop熱交換器將其降至7K目標溫度。

圖8. 韋布太空望遠鏡使用的紅外探測器結(jié)構(gòu)。探測器陣列層(HgCdTe 或 Si:As)吸收光子并將其轉(zhuǎn)換為單個像素的電信號。銦互連結(jié)構(gòu)將探測器陣列層中的像素連接到 ROIC(讀出電路)。ROIC包含一個硅基集成電路芯片,可將超過 100萬像素的信號,轉(zhuǎn)換成低速編碼信號并輸出,以供進一步的處理。圖源:Teledyne Imaging Sensors

圖8.韋布太空望遠鏡使用的紅外探測器結(jié)構(gòu)。探測器陣列層(HgCdTe或Si:As)吸收光子并將其轉(zhuǎn)換為單個像素的電信號。銦互連結(jié)構(gòu)將探測器陣列層中的像素連接到ROIC(讀出電路)。ROIC包含一個硅基集成電路芯片,可將超過100萬像素的信號,轉(zhuǎn)換成低速編碼信號并輸出,以供進一步的處理。圖源:Teledyne Imaging Sensors 

韋布上的所有光電探測器,都具有相同的三明治架構(gòu)(如上圖)。三明治由三個部分組成:(1) 一層半導體紅外探測器陣列層,(2) 一層銦互連結(jié)構(gòu),將探測器陣列層中的每個像素連接到讀出電路陣列,以及 (3) 硅基讀出集成電路 (ROIC),使數(shù)百萬像素的并行信號降至低速編碼信號并輸出。紅外探測器層和硅基ROIC芯片是獨立制備的,這種獨立制造工藝允許對過程中的每個組件進行仔細調(diào)整,以適應(yīng)不同的紅外半導體材料(HgCdTe 或 Si:As)。銦是一種軟金屬,在稍微施加壓力下會變形,從而在探測器層的每個像素和 ROIC陣列之間形成一個冷焊點。為了增加機械強度,探測器供應(yīng)商會在“冷焊”工藝后段,在銦互連結(jié)構(gòu)層注入流動性高,低粘度的環(huán)氧樹脂,固化后的環(huán)氧樹脂提高了上下層的機械連接強度。

韋布的探測器如何工作?
與大多數(shù)光電探測器類似,韋布探測器的工作原理在近紅外 HgCdTe 探測器和中紅外 Si:As 探測器中是相同的:入射光子被半導體材料吸收,產(chǎn)生移動的電子空穴對。它們在內(nèi)置和外加電場的影響下移動,直到它們找到可以存儲的地方。韋布的探測器有一個特點,即在被重置之前,可以多次讀取探測器陣列中的像素,這樣做有好幾個好處。例如,與只進行一次讀取相比,可以將多個非重置性讀取平均在一起,以減少像素噪聲。另一個優(yōu)點是,通過使用同一像素的多個樣本,可以看到信號電平的“跳躍”,這是宇宙射線干擾像素的跡象。一旦知道宇宙射線干擾了像素,就可以在傳回地球的信號后處理中,應(yīng)用校正來恢復受影響的像素,從而保留其觀測的科學價值。


對韋布探測器感興趣的同學們,下面的專業(yè)文獻,可供繼續(xù)學習。
有關(guān)紅外天文探測器的一般介紹,請參閱Rieke, G.H. 2007, "Infrared Detector Arrays for Astronomy", Annual Reviews of Astronomy and Astrophysics, Vol. 45, pp. 77-115
有關(guān)候選 NIRSpec 探測器科學性能的概述,請參閱Rauscher, B.J. et al. 2014, "New and Better Detectors for the Webb Near-Infrared Spectrograph", Publications of the Astronomical Society of the Pacific, Vol 126, pp. 739-749
有關(guān)韋布探測器的一般介紹,請參閱Rauscher, B.J. "An Overview of Detectors (with a digression on reference pixels)"

參考資源:
[1]. 亞利桑那大學關(guān)于MIRI的介紹網(wǎng)頁. http://ircamera.as.arizona.edu/MIRI/index.htm
[2]. Space Telescope Science Institute 關(guān)于MIRI的技術(shù)網(wǎng)頁 https://www.stsci.edu/jwst/instrumentation/instruments
[3]. 韋布的創(chuàng)新制冷設(shè)備介紹 https://www.jwst.nasa.gov/content/about/innovations/cryocooler.html

往期推薦:

1.彩虹碲鎘汞(MCT)探測器,你集齊了嗎?
2.身邊的紅外MCT探測器——鐵路軸溫監(jiān)測
3.虎年新干貨:高速紅外光電探測器為什么這么火?
4. 海爾欣HPPD-M-B探測器性能介紹


?
寧波海爾欣光電科技有限公司 版權(quán)所有 備案號:浙ICP備20026509號-2 sitemap